

Photosynthesis WebQuest

Prior Knowledge: In this lesson you will discover the chemical processes that occur during photosynthesis. Before beginning, use the Learning Scale below to rate your knowledge of photosynthesis. Place a check in the before box. You will re-rate yourself in the after box after the lesson.

Rating Before	6CO ₂ Carbon dioxide + 6H ₂ O Water + 6H ₂ O Water + 6O ₂ Carbon dioxide + 6H ₂ O Water + 6O ₂ Carbon dioxide + 6H ₂ O Water + 6O ₂ Carbon dioxide + 6H ₂ O Carbon dioxide + 6H ₂ O	Rating After					
Lesson		Lesson					
	4 I can teach others about how photosynthesis uses the energy of sunlight to convert reactants to products during the Light-Dependent reactions and the Light-Independent Calvin Cycle.						
	3 I can explain how photosynthesis uses the energy of sunlight to convert reactants to products during the Light-Dependent reactions and the Light-Independent Calvin Cycle.						
	2 I can identify the reactants and products of photosynthesis and define light-dependent and light independent photosynthetic reactions.						
	1 With help, I can identify the reactants and products of photosynthesis and define light- dependent and light independent photosynthetic reactions.						
	o I do not understand the reactants and products of photosynthesis and cannot describe light- dependent and light independent photosynthetic reactions.						

Task 1: Introduction Photosynthesis

Click on the following link to watch the "Photosynthesis" video by the Amoeba Sisters. As you watch, answer the questions below. Short URL: <u>http://tinyurl.com/omkuh4k</u> Full URL: <u>https://www.youtube.com/watch?v=uixA8ZXxoKU</u>

1. What type of sugar do plants and animals need?	
 Plants and animals use glucose to create ATP energy in what process? 	
3. What are pigments?	
4. Different wavelengths of light have different	
5. What color of light does chlorophyll reflect?	
6. What two colors of light does chlorophyll absorb?	
7. Where in the chloroplast do the light dependent reactions occur?	
8. Where in the chloroplast do the light independent reactions occur?	

9. Stop the video at 6:23. Copy what you see on the screen in the space below.

10. Stop the video at 6:31. Copy what you see on the screen in the space below.

Task 2: Light & Plant Growth Virtual Lab

Click on the link below to complete the Light & Plant Growth Virtual Lab from the Glencoe Website. Follow the directions on this sheet to complete the lab.

Short URL: http://tinyurl.com/4soq36p

Full URL: <u>http://www.glencoe.com/sites/common_assets/science/virtual_labs/LS12/LS12.html</u>

11. Click on the video button on the bottom left of the virtual lab screen. Watch the video and write 2 facts you learned from the video here.

•

12. Make a hypothesis about what color of light will cause the *most* plant growth and what color of light will cause the *least* plant growth. Assume that all other factors, such as fertilizer, water, temperature, etc., are controlled and constant. You can choose from red, violet, blue, green, or orange wavelengths of light.

Procedure:

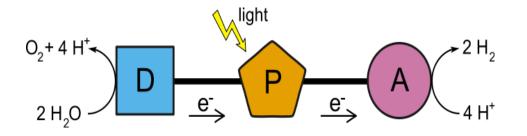
- 1. Click on the seed.
- 2. Manipulated the wavelength color with the arrows on the bottom of the lab screen.
- 3. Turn on the light with the switch at the bottom of the lab screen.
- 4. Wait for plant growth and move the ruler on lab screen to measure your plant growth.
 - a. Measure Middle Plant at Its Highest Point!
- 5. Record Your Data On The Table Below.
- 6. Click "Reset" to begin again with new colors or plants.

Filter Color	Spinach (cm)	Radish (cm)	Lettuce (cm)
13.			
14.			
15.			
16.			
17.			

18. Does your data support your hypothesis? Why or Why Not? ______

19. Which colors of light were most successful in growing taller plants? ______

	Task 3	Photosynthesis Interactive Game	
Click on the link to acc	-	-	o. Follow the directions to complete
	•		s you go. If you need to go back in
-	-	and side of the game screen.	, , , , ,
Short URL: http://tinyu		C	
		esandLabs/PhotoRespgames/photo	<u>pinteractivehtml5page.html</u>
• •			
Click "Start A New Ga	me"		
			$co_2 \rightarrow co_2$
A. Leaf Anatomy			
-Double Click on "Lea	f Anatomy" Button		
(Steer your ship with t	the arrow keys on your	keyboard.)	н ₂ о—- ⁷
21. The		cells near the top of the	leaf are most responsible for doing
		·	
22. Which cell organel	le performs photosynt	hesis?	
23. Inside the chloropl	last, the green disks are	e called	The
		reactions happen here.	
24. Stroma is the fluid	surrounding the thylal	koids. The	happens here.
B. Light Dependent Re	<u>eactions</u>		
 Return to Main Men 	u & Double Click on "L	ight-Dependent Reactions" Buttor	1
25. The light depende	nt reactions happen in	the thylakoid	of the chloroplast.
26. Photolysis Step 1:		strikes chlorophyll in	. The causes
	to be	come excited (gain energy)	
27. The	electrons then leave	Photosystem II and travel down th	e of the
28 Photolysis Step 21	Wateric	to replace electrons lost	from Photosystem II. This produces
			from Photosystem II. This produces _
29. The excited electro	ons continue their jour	ney down the	
30. As the electrons tr	avel down the chain, t	neir energy is used to	hydrogen ions (protons)
	into the		
21 The recult is a	60D6	ontration of U in the thylakaid cas	co and a
	conc	entration of H+ in the thylakoid spa	
		<u> </u>	
32. The H+ will natural	lly move from a high to	a low concentration by	The only place on the
		called	
	U 1 -		


as an energy source	to help produce
of the chloroplast.	
nain to	
cited again. These electrons cont	tinue down a
to form	. NADPH is an
e stroma where they will be used	l in the Calvin Cycle to
and make	<u>_</u>
<u>tton</u>	***
d to RuBP by the	rubisco.
	to
One molecule of G3P will le	ave the Calvin Cycle and
•••••••••••••••••••••••••••••••••••••••	s from
er again with carbon	
	and make atton d to RuBP by the cule of 3-phosphoglycerate is com

D. Quiz – Return to Main Menu. Double Click on "Quiz" Button

46. Take the quiz as many times as needed to score an <u>80% or higher</u>.

Write down this score here_

Take a screen shot of the scoring summary to show your teacher later as proof of your achievement.

